# **Certifficate**

## Passive House Suitable Component

For cool temperate climates, valid until 31. December 2024

Category: Compact Heat Pump System

Manufacturer: Nilan A/S

8722 Hedensted, DENMARK

Product name: Compact P (92 m³/h)

This certificate was awarded based on the following criteria (limit values\*):

Thermal Comfort:  $\theta_{\text{supply air}} \ge 16,5^{\circ}\text{C}$ 

Heat Recovery of ventilation system: η<sub>WRG,eff</sub> ≥ 75%

Electric efficiency ventilation system: Pel ≤ 0,45 Wh/m³

Air tightness (internal/external):  $V_{Leakage} \leq 3\%$ 

Total Primary Energy Demand (\*\*): PEtotal ≤ 55 kWh/(m²a)

Control and calibration (\*)

Air pollution filters (\*)

Anti freezing strategy (\*)

Noise emission and reduction (\*)

# Measured values to be used in PHPP (set point 92 m³/h) useful air flow rates 52 to 120 m³/h

| Heating                                                         |                     | Test point 1 | Test point 3 | Test point 3 | Test point 4 | _  |
|-----------------------------------------------------------------|---------------------|--------------|--------------|--------------|--------------|----|
| Outside Air<br>Temperature                                      | $T_{amb}$           | -7.0         | 2.1          | 7.1          |              | °C |
| Thermal Output<br>Heating Heat Pump                             | $P_{WP,Heiz}$       | 0.49         | 0.62         | 0.67         |              | kW |
| COP number Heating<br>Heat Pump                                 | COP <sub>Heiz</sub> | 2.43         | 2.55         | 2.78         |              | -  |
| Maximum available supply air temperature with Heat Pump only(*) |                     | 33.6         |              |              | °C           |    |

| Hot water                                             |                             |
|-------------------------------------------------------|-----------------------------|
| Outside Air<br>Temperature                            | T <sub>amb</sub>            |
| Thermal Output Heat Pump for heating up storage tank. | P <sub>DHW</sub> heating up |

Thermal Output Heat
Pump for heating up
storage tank.
Thermal Output Heat
Pump for reheating
storage tank

COP Heat Pump for
heating up storage tank

COPDHW, heating up

COP Heat Pump for reheating storage tank COPDHW reheating

Specific storage heat losses Exhaust air addition (if applicable)

Averge storage tank temperature

|   | Test point 1 | Test point 3 | Test point 3 | Test point 4 |      |  |  |  |
|---|--------------|--------------|--------------|--------------|------|--|--|--|
|   | -6.9         | 1.9          | 7.2          | 20.2         | °C   |  |  |  |
| ) | 0.51         | 0.72         | 0.89         | 1.02         | kW   |  |  |  |
|   | 0.54         | 0.71         | 0.83         | 0.94         | kW   |  |  |  |
|   | 2.11         | 2.60         | 3.08         | 3.38         | -    |  |  |  |
|   | 1.94         | 2.50         | 2.80         | 3.05         | -    |  |  |  |
|   | 50.5         |              |              |              |      |  |  |  |
|   | 1.63         |              |              |              |      |  |  |  |
|   |              |              |              |              | m³/h |  |  |  |

(\*) detailed description of criteria and key values see attachment.

(\*\*) for heating, domestic hot water (DHW), ventilation, auxiliary electricity in the reference building, explanation see attachment.

www.passivehouse.com

0390ch03

Passivhaus Institut Dr. Wolfgang Feist 64283 Darmstadt GERMANY

#### **Heat Recovery**

 $\eta_{WRG,eff} = 77\%$ 

### **Electric efficiency**

0.43 Wh/m<sup>3</sup>

### Air tightness

 $V_{leak, internal} = 1.0\%$  $V_{leak, external} = 1.1\%$ 

### **Frost protection**

down to -7 °C

Total Primary Energy
Demand (\*\*)
54.1 kWh/(m²a)



## **Certificate**

## Passive House Suitable Component

For cool temperate climates, valid until 31. December 2023

Category: Compact Heat Pump System

Manufacturer: Nilan A/S

8722 Hedensted, DENMARK

Product name: Compact P (172 m³/h)

This certificate was awarded based on the following criteria (limit values\*):

Thermal Comfort:  $\theta_{\text{supply air}} \ge 16,5^{\circ}\text{C}$ 

Heat Recovery of ventilation system: η<sub>WRG,eff</sub> ≥ 75%

Electric efficiency ventilation system: Pel ≤ 0,45 Wh/m³

Air tightness (internal/external): V<sub>Leakage</sub> ≤ 3%

Total Primary Energy Demand (\*\*): PEtotal ≤ 55 kWh/(m²a)

Control and calibration (\*)

Air pollution filters (\*)

Anti freezing strategy (\*)

Noise emission and reduction (\*)

# Measured values to be used in PHPP (set point 172 m³/h) useful air flow rates 120 to 205 m³/h

| Heating                                                         |            | Test point 1 | Test point 3 | Test point 3 | Test point 4 | _  |
|-----------------------------------------------------------------|------------|--------------|--------------|--------------|--------------|----|
| Outside Air<br>Temperature                                      | $T_{amb}$  | -3.7 °C      | 2.0 °C       | 6.9 °C       |              | °C |
| Thermal Output<br>Heating Heat Pump                             | Pheating   | 0.61         | 0.78         | 0.92         |              | kW |
| COP number Heating<br>Heat Pump                                 | COPHeating | 2.65         | 3.18         | 3.58         |              | -  |
| Maximum available supply air temperature with Heat Pump only(*) |            | 28.6         |              |              | °C           |    |

| Но | t | water |
|----|---|-------|
|    |   |       |

| Outside Air<br>Temperature                                  | T <sub>amb</sub>              |
|-------------------------------------------------------------|-------------------------------|
| Thermal Output Heat<br>Pump for heating up<br>storage tank. | P <sub>DHW</sub> heating up   |
| Thermal Output Heat<br>Pump for reheating<br>storage tank   | P <sub>DHW</sub> reheating    |
| COP Heat Pump for heating up storage tank                   | COP <sub>DHW</sub> heating up |
| COP Heat Pump for reheating storage tank                    | COP <sub>DHW</sub> reheating  |

reheating storage tank reheating

Averge storage tank temperature

Exhaust air addition (if applicable)

Specific storage heat losses

|   | Lest point 1 | Lest point 3 | Test point 3 | l est point 4 | _      |  |  |  |
|---|--------------|--------------|--------------|---------------|--------|--|--|--|
|   | -4.0 °C      | 2.0 °C       | 7.0 °C       | 20.2 °C       | °C     |  |  |  |
| , | 0.60         | 0.83         | 0.99         | 1.14          | kW     |  |  |  |
|   | 0.53         | 0.82         | 0.95         | 1.05          | kW     |  |  |  |
| ) | 2.13         | 2.87         | 3.31         | 3.68          | -      |  |  |  |
|   | 1.81         | 2.72         | 3.05         | 3.28          | <br> - |  |  |  |
|   | 50.5         |              |              |               |        |  |  |  |
|   | 1.63         |              |              |               |        |  |  |  |
|   |              |              |              |               | m³/h   |  |  |  |

(\*) detailed description of criteria and key values see attachment.

(\*\*) for heating, domestic hot water (DHW), ventilation, auxiliary electricity in the reference building, explanation see attachment.

www.passivehouse.com

0391ch03

Passivhaus Institut Dr. Wolfgang Feist 64283 Darmstadt GERMANY

### **Heat Recovery**

 $\eta_{WRG,eff} = 80\%$ 

### **Electric efficiency**

0.40 Wh/m3

#### Air tightness

 $V_{leak, internal} = 1.0\%$  $V_{leak, external} = 1.1\%$ 

### **Frost protection**

down to -4 °C

Total Primary Energy
Demand (\*\*)
51.4 kWh/(m²a)

